Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

Freudenberg develops noise-reduction sealing system for underwater construction

By Nic Sharpley | August 15, 2013

FSTFreudenberg Sealing Technologies Merkel (Freudenberg) had a goal: less noise pollution for harbor porpoises affected in the installation of offshore wind turbine systems. Through the development of a special sealing system, Freudenberg was able to reduce the underwater noise generated during foundation work for offshore facilities by 10 decibels.

When doing foundation work for offshore wind power stations, the noises that result can pose substantial stress for marine mammals, such as harbor porpoises that have a very acute sense of hearing. For that reason, in 2006 the German Federal Office for the Environment commissioned a study on the reduction of noise from underwater ramming work offshore. Hands-on testing was also performed to examine various noise-reducing processes.

Five years later, the German Federal Agency for Nature Conservation followed up with a study on the status of the developments. Its findings revealed that the air-cushion process was the most effective and cost-efficient sound proofing measure. In this process, columns that are to be driven are enclosed in a hollow pipe. Inside the pipe, an air cushion is generated, resulting in a significant reduction in noise emissions.

Based on these results, Freudenberg developed a special sealing system that insulated the noise source in the water. The requirements for this sealing system are highly sophisticated and include:

  • Large diameter of approximately 2.5 meters,
  • Ability to perform at a depth of up to 40 meters and at a high pressure of up to 6 bar,
  • Deviation in the seal gap of up to +/- 25 millimeters.

Freudenberg’s simulation and computation tools made it possible to produce an initial prototype, and subsequently develop a sealing system with specially shaped sealing elements, in a short amount of time. This sealing system consists of three sealing rings that enclose the external hollow pipe on its upper end against the column to be driven. This lets air be compressed into the middle space, displacing water. The multilayer configuration of the seals allows for high pressures to gradually be decreased.

Freudenberg Sealing Technologies Merkel
www.fst.com


Filed Under: News, Offshore wind, Projects
Tagged With: freudenbergsealingtechnologiesmerkel
 

Related Articles Read More >

US government allows Empire Wind offshore project to resume construction
Richardson Electronics to deliver pitch energy modules to TransAlta wind fleets
Equinor halts work on Empire Wind offshore project after federal government order
ARESCA wants input on offshore wind standards

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition Archive

Digital Edition

Explore the full archive of digital issues of Windpower Engineering & Development, presented in a high-quality, user-friendly format. Access current and past editions, clip, share, and download valuable content from the industry’s leading wind power engineering resource.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe