Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

New study explores hidden benefits of supersized wind turbines

By WPED Staff | July 13, 2020

A new study by Berkeley Lab, published in the journal Wind Engineering, shows that supersized wind turbines can enhance the value of wind energy to the electricity system and provide other ‘hidden’ benefits. These benefits are in addition to the reduction in levelized costs that such turbines may provide, and illustrate the importance of expanding wind turbine design to focus not only on direct-cost minimization, but also on a broader set of factors that impact the value of wind to the electricity grid.

The significant increases in wind turbine size (nameplate capacity, rotor diameter, and tower height) in recent years have, to date, been driven primarily by a goal of minimizing the levelized cost of wind energy (LCOE). Previous research by Berkeley Lab suggests that even larger ‘supersized’ turbines—featuring larger rotor swept areas relative to nameplate capacity, and taller towers—might enable further LCOE reduction of ~$6/MWh. Other research by DNV GL identified a number of potential solutions to the logistical challenges associated with deploying supersized turbines. But with wind’s LCOE now comparable to that of other generating resources, other design considerations besides cost-minimization have grown in importance—particularly as wind penetration increasingly impacts the electricity grid and reduces wind’s marginal value to the grid. The newly released paper addresses that expanded design need, analyzing the impact of large wind turbines on grid-system value.

Figure 1

The study’s results demonstrate a possible double dividend: that larger rotors (relative to nameplate capacity) and taller towers might not only reduce LCOE, but could also enhance the value of wind energy and provide other heretofore ‘hidden’ benefits. These benefits largely come from the increased capacity factors that larger rotors and taller towers enable, and the fact that such supersized turbines tend to spread wind output proportionately over more hours of the year.

Specifically, the analysis leverages recent hourly wholesale pricing patterns and hourly wind profiles for wind plants located in the seven organized wholesale markets (i.e., ISOs) in the United States. The study finds that in regions where wind penetration has reached around 20% (such as ERCOT and SPP), supersized turbines could already boost wholesale energy and capacity value by $2-3/MWh on average, compared to turbines deployed in the recent past (Figure 1). Across all ISO regions, the average value boost is $1-2/MWh; for specific plants, the value enhancement is already as much as ~$5/MWh.

Figure 2

These wholesale market value benefits are augmented by three additional possible advantages of up-scaled turbines: reduced transmission expenditure due to greater transmission utilization, lower balancing costs for the electricity system due to lower aggregate wind output variability, and lower financing costs due to less long-term wind output uncertainty. The analysis finds that these three benefits sum to roughly $2/MWh (Figure 2), adding to the $2-3/MWh energy and capacity value boost seen in regions with higher wind penetrations (Figure 1).

Considering all of the benefits analyzed, the aggregate benefit averages $4-5/MWh in higher wind-penetration areas. Moreover, these possible benefits add to the $6/MWh of potential LCOE advantage of supersized turbines assessed in earlier work, yielding total benefits of ~$10/MWh. The degree to which these advantages are ultimately realized, and at what point turbine size plateaus, will be determined by future wholesale price patterns, the success of continued design and materials optimization, social acceptance and regulatory hurdles, and the logistical constraints of transporting and erecting even-larger blades, towers, and nacelle components.

Wind energy has deployed rapidly on a global basis, but continued technical advancements will be necessary if wind energy is to reach its full potential. This paper contributes to a growing understanding of one innovation pathway—further upscaling in turbine size—by focusing on several less-recognized benefits of larger-rotor and taller-tower land-based wind turbines. More generally, the analysis also illustrates the growing importance of factors beyond plant-level costs in turbine and project design and operations. As wind penetrations increase, the output profile and characteristics of wind begin to impose challenges to the electric grid. By expanding the analysis scope to consider supplementary factors that influence the system economics of wind—market value, transmission, balancing, and financing—turbine designers, project developers, and wind R&D experts can help ensure that wind plants of the future seek a balance between minimizing costs and maximizing value.

The new journal article (along with a PowerPoint summary), titled “The Hidden Value of Large-Rotor, Tall-Tower Wind Turbines in the United States” can be accessed here. The previous article on which the present work builds can be found here.

This work was funded by the U.S. Department of Energy’s Wind Energy Technologies Office.

News item from LBL


Filed Under: News

 

About The Author

WPED Staff

Related Articles Read More >

Equinor launches ECO Liberty service operations vessel for Empire Wind offshore project
Triton Anchor receives U.S. patents for offshore anchor
US government allows Empire Wind offshore project to resume construction
Richardson Electronics to deliver pitch energy modules to TransAlta wind fleets

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition Archive

Digital Edition

Explore the full archive of digital issues of Windpower Engineering & Development, presented in a high-quality, user-friendly format. Access current and past editions, clip, share, and download valuable content from the industry’s leading wind power engineering resource.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe