Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

Siemens presents first gas-insulated 320-kV switchgear for direct current transmission

By Nic Sharpley | August 26, 2014

In a typical configuration, the DC switchgear consists of the following main components: disconnectors, grounding switches, current and voltage measuring systems, cable and connection modules, and surge voltage protectors.

In a typical configuration, the DC switchgear consists of the following main components: disconnectors, grounding switches, current and voltage measuring systems, cable and connection modules, and surge voltage protectors.

At the Cigré conference in Paris, Siemens today presented the first compact gas-insulated switchgear (GIS) for high-voltage direct current applications. Within the framework of the energy transition, high-voltage direct current (HVDC) transmission is gaining in significance as it allows low-loss transmission of large amounts of electricity over long distances. The new 320-kilovolt (kV) gas-insulated switchgear uses up to 95 percent less space compared to previous air-insulated units. When used on an offshore platform, the platform size can thus be decreased by approximately 10 percent.

The efficient HVDC transmission technology is necessary to bring wind power generated in the North Sea to load centers in southern Germany, for example. For this, 155 kV of alternating current (AC) from wind power is converted on a converter platform into 320 kV of low-loss direct current (DC) and then transmitted to land via submarine cables. When transmitting electricity, the general rule is that the higher the voltage, the less power lost. Once on land, a converter station converts the direct current back into alternating current for further distribution.

The direct current switchgear that is part of the converter station currently uses air-insulated technology and thus requires a large amount of space. Because of air’s relatively low insulating capability, the individual components can only be installed with a large amount of space between them and also between them and the earth potential. The air-insulated DC switchgear that has been used on Siemens’ converter platforms until now requires about 4,000 cubic meters of space, thereby requiring halls that are from two to ten meters high. However, space is a decisive cost factor both out at sea as well as in urban population centers. The innovative, compact DC CS (Direct Current Compact Switchgear) has the same capacity but needs only 200 cubic meters, thereby allowing space savings of up to 95 percent.

In addition to the small size, the newly developed switchgear has other advantages. Its module-based design makes the DC CS especially flexible and simple to set up, and enables the use of cost-efficient shipping and transportation methods. Because all current-carrying parts are fully encapsulated, the system can also be reliably installed under demanding environmental conditions, such as on the high seas or near the coast, and it does not necessarily have to be housed in a building. Furthermore, the compact switchgear offers maximum reliability and low maintenance costs. The DC CS systems are manufactured in Siemens’ Berlin switchgear production plant.

While gas-insulated, three-phase current switchgear has been part of Siemens’ portfolio for decades, there had not been a corresponding gas-insulated technology for direct current applications to date. Since controlling an electric field under direct current is very complex, it had not been possible until now to build gas-insulated, compact DC switchgear for HVDC transmission applications. The development of a new isolator, which can permanently withstand the demands of high-voltage direct currents, made it possible to develop the first DC GIS switchgear. A pilot station based on 320-kV direct-current components that simulates the connection of an offshore wind farm to the grid is currently being run through a long-term test.

DC CS systems and the associated service are part of Siemens’ Environmental Portfolio. Around 43 percent of its total revenue stems from green products and solutions. That makes Siemens one of the world’s leading providers of eco-friendly technology.

Also read: Siemens to supply 67 D6 wind turbines for Dudgeon offshore wind farm

Siemens
www.siemens.com


Filed Under: News
Tagged With: siemens
 

Related Articles Read More >

US government allows Empire Wind offshore project to resume construction
Richardson Electronics to deliver pitch energy modules to TransAlta wind fleets
Equinor halts work on Empire Wind offshore project after federal government order
ARESCA wants input on offshore wind standards

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition Archive

Digital Edition

Explore the full archive of digital issues of Windpower Engineering & Development, presented in a high-quality, user-friendly format. Access current and past editions, clip, share, and download valuable content from the industry’s leading wind power engineering resource.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe