Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

A validation study of Vaisala’s wind energy assessment methods

By Paul Dvorak | May 12, 2017

Mark Stoelinga, Senior Scientist
Matthew Hendrickson, Manager of Energy Assessment

This article presents the executive summary of the study.

Vaisala has conducted a significant validation study of its due diligence wind energy assessment methodology. The study was based on 127 years of energy from commercial wind farm operations at 30 different wind farms in the United States, Europe, and Asia. Pre-construction assessments were performed with Vaisala’s current methodology in a blind retrospective forecast framework. The mean bias error for all wind farm years (where “error” is defined as actual energy produced minus the pre-construction long-term estimate, expressed as a percent) was +0.1%, with a 95% confidence interval of ±4.3%. The standard deviation of the 1-year errors was 8.8%, somewhat lower than Vaisala’s mean estimated 1-year uncertainty on energy of 10.6%, indicating that Vaisala’s estimated uncertainties are somewhat conservative.

Figure 1. Map showing the approximate regional distribution of wind farms included in the study. The number inside each marker specifies the number of wind farms in the region indicated.

In this study, Vaisala has also examined whether there is a relationship between prediction error and pre-construction estimate uncertainty. To do this, a Monte Carlo model was developed that enabled simulation of thousands of validation studies similar to the one actually carried out. A simple metric for quantifying the uncertainty/error relationship was defined, which is the slope of the best-fit line on a scatter plot of absolute wind farm year errors versus 1-year uncertainty estimates. The slope in Vaisala’s study was 0.57, and this slope implied a median “uncertainty model skill factor” (i.e. the fraction of variance in the uncertainty explained by the uncertainty model, with 0.0 showing no skill and 1.00 showing perfect skill) of 0.51.

In other words, Vaisala’s result was the median result expected by a “half-perfect” uncertainty model. However, given the sample size of the current study, the 95% confidence lower bound was a skill factor of only 0.09 (i.e. Vaisala is 95% confident that its uncertainty model is at least 9% perfect). These results illustrate how difficult it is to confirm a strong positive uncertainty/error relationship. Even with 1000 additional wind farm years and the current results still standing, Vaisala would still only be able to make a statement with 95% confidence that we have an uncertainty model that is at least 25% perfect.

This study is good evidence that Vaisala’s wind energy assessment process is calibrated to actual production while showing that there is at least some positive relationship between uncertainty and prediction error.

For the full 20-page paper, register here: https://goo.gl/Nr3M3k


Filed Under: Uncategorized
Tagged With: Viasala
 

About The Author

Paul Dvorak

Related Articles Read More >

DTE Energy to buy three new Michigan wind farms
Connecticut seeking input on draft solicitation for offshore wind
Maine establishes three new renewable energy laws
US Wind applauds extension of offshore wind tax credit

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition Archive

Digital Edition

Explore the full archive of digital issues of Windpower Engineering & Development, presented in a high-quality, user-friendly format. Access current and past editions, clip, share, and download valuable content from the industry’s leading wind power engineering resource.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe