Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

Galion Lidar first to be approved for low cost offshore power curve tests

By Nic Sharpley | June 10, 2013

SgurrEnergyThe Fraunhofer Institute for Wind Energy and Energy System Technology (Fraunhofer IWES) has verified the accuracy of Galion Lidar’s “remote mast” function.  This is the first independent validation of this novel wind measurement method in the industry.

The research institute says that Galion Lidar, a remote wind measurement device developed by international renewable energy consultancy, SgurrEnergy, “may be recommended […] for a power performance assessment offshore with the lidar installed on the transition piece of the test turbine.”

Power performance assessment of offshore wind turbines is essential to ensure they are working correctly, however the use of conventional met mast technology to carry out these tests comes at a high cost.  The innovation of low cost, lidar-based alternatives to measure wind speed has been stimulated by the need to reduce these costs.

These include lidars installed on fixed or floating platforms, on the nacelle of the test turbine, or acquiring remote mast measurements from the transition piece (the walkway at the bottom of the tower).  Floating and nacelle mounted solutions are explicitly excluded by current IEC standards, which state, “Only ground based remote sensing devices are used (e.g. nacelle mountings are not included).”  Only Lidars situated on the transition piece of the test turbine or on fixed platforms comply with this IEC requirement.

According to the Fraunhofer IWES study, Galion Lidar’s “remote mast” capability allows measurements “where a horizontal distance between the location of the measurement device and its measurements is necessary”. This lets IEC compliant measurements be obtained at a fraction of the costs of the current standard method by a Galion installed on the transition piece of an offshore wind turbine. The measurements were compared to an IEC compliant met mast, and “the results of the verification test indicate a good agreement.” The comparison was undertaken in moderately complex terrain and so “it is expected that the uncertainties [for offshore power curve tests] are even smaller […] since the influences of the terrain would be less significant for an offshore site.” The distance and height over which the test was conducted met the requirements of an IEC compliant power curve test.

The Galion’s capabilities offshore have recently been demonstrated by a series of high profile deployments in the North Sea, Baltic Sea, and South China Sea. Galion Lidar is currently performing an offshore power performance assessment on the transition piece of a wind turbine in the Alpha Ventus offshore wind farm as part of a joint measurement campaign with AREVA Wind.

The approval of the lidar capabilities by Fraunhofer IWES follows a series of independent verifications of the device.  Galion was given the seal of approval by wind energy experts, Deutsche WindGuard in March, was independently certified by Risø DTU in Denmark and is routinely tested at SgurrEnergy’s remote sensing test facility at Carrot Moor in Scotland.

SgurrEnergy
www.sgurrenergy.com


Filed Under: News
Tagged With: sgurrenergy
 

Related Articles Read More >

Richardson Electronics to deliver pitch energy modules to TransAlta wind fleets
Equinor halts work on Empire Wind offshore project after federal government order
ARESCA wants input on offshore wind standards
US wind market has worst install year since 2013

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition

Digital Edition

Browse the most current issue of Windpower Engineering & Development and back issues in an easy to use high quality format. Clip, share and download with the leading wind power engineering magazine today.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe