Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe

How are motors and drives used in a wind-turbine nacelle?

By Joshua Smalley | August 12, 2015

Siemens-nacelle

Photo credit: Siemens

A wind turbine needs yaw brakes to hold the rotor facing into the wind. If the turbine is not facing directly into the wind, it is not producing at full capacity. When wind direction changes, a turbine’s controls instruct its yaw motors to reposition the nacelle.

“In theory, this could be handled by one large yaw motor, but this would be problematic from a functional point of view,” said Andreas Gotfredsen, head of the yaw group at Siemens Wind Power and Renewables Division’s technical engineering department. “Although more motors drive the cost up, several work better than one.”

At Siemens, all turbines are fitted with the optimal yaw capacity for the load envelope of the turbine, according to Gotfredsen. That is, the harsher the conditions the turbine faces, the more yaw capacity it needs. Then too, a smaller diameter yaw ring requires more torque and a higher gear ratio, assuming similar-size rotors.

To illustrate, Siemens’s latest turbines, from its D3 platform, use 12 x 1.5 kW yaw motors, while the turbines from its large offshore D7 platform, use 16 yaw motors—relatively less from a megawatt point of view. This difference is due to comparatively less capacity needed per motor because the yaw-ring diameter is larger, said Gotfredsen.

Despite the difference between onshore and offshore wind environments, there is not necessarily a difference in the motors and drives of the turbines.

“An offshore wind turbine is completely sealed from outside influences, such as the higher humidity in offshore,” said Gotfredsen. “There is no difference between Siemens D3 and D7 platforms, they have the exact same yaw motor design. This provides us with a greater choice in suppliers and greater spare-part flexibility throughout turbine lifetime.”

An emerging development in motors and drives that will be useful for offshore wind: simplify, simplify, simplify.

“We strive to simplify our turbines as much as possible to reduce moving parts, which increases reliability,” said Gotfredsen. He sees the same trend in Siemens’s competitors, and expects the trend to continue.

Yaw systems are also being simplified. For instance, Siemens’s direct-drive turbine features a frictional sliding bearing as opposed to one with rolling elements.

Competitors differ in the placement of yaw-ring gears. Some gear teeth are machined on the inside and some on the outside of the yaw bearing. There is not much change as far as concept goes, but the placement is a design choice for different reasons.

One trend that may become more popular with competitors could be the use of yaw motor frequency converters, Gotfredsen predicted. This would help companies trim their power consumption.


Filed Under: Components, Featured, Nacelle, News, Pitch & yaw, Turbines
Tagged With: siemens
 

Related Articles Read More >

US government allows Empire Wind offshore project to resume construction
Richardson Electronics to deliver pitch energy modules to TransAlta wind fleets
Equinor halts work on Empire Wind offshore project after federal government order
ARESCA wants input on offshore wind standards

Podcasts

Wind Spotlight: Looking back at a year of Thrive with ZF Wind Power
See More >

Windpower Engineering & Development Digital Edition Archive

Digital Edition

Explore the full archive of digital issues of Windpower Engineering & Development, presented in a high-quality, user-friendly format. Access current and past editions, clip, share, and download valuable content from the industry’s leading wind power engineering resource.

Windpower Engineering & Development
  • Wind Articles
  • Solar Power World
  • Subscribe to Windpower Engineering
  • About Us/Contact Us

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising

Search Windpower Engineering & Development

  • Home
  • Articles
    • Most recent posts
    • News
    • Featured
  • Resources
    • Digital issues
    • Podcasts
    • Suppliers
    • Webinars
    • Events
  • Videos
  • 2025 Leadership
    • 2024 Winners
    • 2023 Winners
    • 2022 Winners
  • Magazine
  • Advertise
  • Subscribe